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Bayesian persuasion
A game-theoretic model of strategic information revelation
for how to lead an agent to a preferred action
Bayesian persuasion [Kamenica–Gentzkow’11]

　　 　　
Sender Receiver

Send a signal1 2 Decidean actionThe action affectsthe sender’s utility3

QQ How to compute an optimal signaling strategy?
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Applications of Bayesian persuasion
(1) Ads

　　 　　
Company Customer

　　 Ads
Buy the productor not

　　 Profit

(2) Election
　　 　　

Candidate Citizen

　　 Speech
Vote or not

　　 Elected or not
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Example of Bayesian persuasion [Kamenica–Gentzkow’11]

QQ What is an optimal signaling strategy for the company?

　　 　　

　　

Company Customer

Product

Want to sell products
as many as possible

Want to buy
good products

Good with prob. 13
Bad with prob. 23

The state is
revealed0

Recommend the product or not1 2 Decide whether
to buy or not
Follow the
recommendation
if at least half of
products are good

Obtain a profit3
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Example of Bayesian persuasion [Kamenica–Gentzkow’11]

OptimalOptimal Recommend all good products and half of bad products
Customer buys 2

3 of all products

　　 　　 　　
Company CustomerProduct

Good
Bad

Prob. 13

Prob. 23

Recommend
Not recommend

1
3

1
3

1
3

Buy
Not buy
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Example of Bayesian persuasion [Kamenica–Gentzkow’11]

Goodwith prob. 1 Badwith prob. 1

Good with prob. 13
Bad with prob. 23
Good with prob. 13
Bad with prob. 23

Receiver’s utility ofnot buyingReceiver’s utility ofbuying

Buy Not buy
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Notation for Bayesian persuasion

　　 　　

　　

Sender Receiver

Natute

Maximize sθ(a) Maximize rθ(a)

The state of nature θ ∈ Θ is
generated from prior μ ∈ ∆Θ

The state θ is
revealed0

Recommend a ∼ φθ ∈ ∆A1 2 Decide a ∈ A
if Eθ∼ξa [rθ(a)]
≥ Eθ∼ξa [rθ(a′)]for any a′ ∈ A

Obtain sθ(a)3

signaling scheme (φθ)θ∈Θ is declared in advance(commitment assumption)
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Linear programming formulation [Kamenica–Gentzkow’11]

Computation of an optimal strategy can be formulated as LP

maximize
(φθ)θ∈Θ

∑
θ∈Θ

∑
a∈A

μ(θ)φθ(a)sθ(a)

= Eθ∼μ,a∼φθ [sθ(a)] Sender’s expected utility
subject to ∑

θ∈Θ
μ(θ)φθ(a)
�
rθ(a)− rθ(a′)� ≥ 0 (a,a′ ∈ A)

⇔ Eθ∼ξa [rθ(a)] ≥ Eθ∼ξa [rθ(a′)] persuasiveness constraints
φθ ∈ ∆A (θ ∈ Θ)
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Bayesian persuasion with combinatorial actions
(1) Buy multiple products
　　 　　

Company Customer

Ads
　　 　　 　　 　　

　　 　　 　　

Buy k products
Profit

(2) Choose a path
　　 　　

Navigation
system

Car

Recommend a path 　　 　　

Choose a path from s to t
Solve congestion
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Bayesian persuasion with combinatorial actions
Receiver’s action is a combination of elements in a finite set E
i.e., A = I, where I ⊆ 2E is a set family

　　 　　 　　 　　

　　 　　 　　

Buy k products
E is the set of products
I = {S ⊆ E | |S| ≤ k}
uniform matroid constraints

　　 　　

Choose a path from s to t
E is the set of edges
I = {S ⊆ E | s–t path}
path constraints
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Notation for BP with combinatorial actions
Consider a recommendation of combinatorial action S ∈ I ⊆ 2E

　　 　　

　　

Sender Receiver

Natute

Maximize sθ(S) Maximize rθ(S)

The state of nature θ ∈ Θ is
generated from prior μ ∈ ∆Θ

The state θ is
revealed0

Recommend S ∼ φθ ∈ ∆I1 2 Decide S ∈ I
if Eθ∼ξS [rθ(S)]
≥ Eθ∼ξS [rθ(S′)]for any S′ ∈ I

Obtain sθ(S∗)3
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LP formulation of BP with combinatorial actions
LP with exponentially many variables and constraints

maximize
(φθ)θ∈Θ

∑
θ∈Θ

∑
S∈I

μ(θ)φθ(S)sθ(S) Sender’s expected utility
subject to ∑

θ∈Θ
μ(θ)φθ(S)
�
rθ(S)− rθ(S′)� ≥ 0 (S, S′ ∈ I)

persuasiveness constraints
φθ ∈ ∆I (θ ∈ Θ)

QQ Is it possible to solve this LP in time polynomial in |E|?
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Summary of our contributions
QQ Is it possible to efficiently compute an optimal signaling strategy
QQ for Bayesian persuasion with combinatorial actions?
Our resultsOur results
1 NP-hardness of constant-factor approximations
2 Poly-time algorithms when the number of states is a constant
3 Poly-time algorithms for CCE-persuasiveness
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Result (1): NP-hardness
Constant-factor approximation is NP-hard for simple constraints
Theorem
For any α ∈ (0,1], it is NP-hard to compute an α-approximate signaling
scheme for Bayesian persuasion with any of

uniform matroid constraints
partition matroid constraints
graphic matroids constraints
path constraints

if the utility functions are linear, i.e., sθ(S) =∑i∈S sθ({i}) and rθ(S) =∑i∈S rθ({i})
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Result (1): NP-hardness
Partition matroids
Reduction from public Bayesian persuasion with no externalities[Dughmi–Xu’17]
Uniform matroids, Graphic matroids, Paths
Reduction from LINEQ-MA(1− ζ, δ) [Guruswami–Raghavendra’09]
Given a linear system Ax = c, the promise problem of distinguishing
– there exists x ∈ {0,1}n that satisfies at least a 1− ζ fraction of the equations
– every x ∈ Qn satisfies less than a δ fraction of the equations
based on the reduction for OptSignal [Castiglioni–Celli–Marchesi–Gatti’20]
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Result (2): When |Θ| is a constant
We need to consider combinations that can be a best response∑

θ∈Θ μ(θ)φθ(S) (rθ(S)− rθ(S′)) ≥ 0 (S, S′ ∈ I)persuasiveness constraints
⇔ S ∈ argmax

S∈I
∑
θ∈Θ

μ(θ)φθ(S)rθ(S) for each S ∈ I
S is a best response for posterior ξS(θ) ∝ μ(θ)φθ(S)

Observation
In the LP formulation, instead of I , it is sufficient to consider

I∗ =

¨
S ∈ I
���� ∃ξ ∈ ∆Θ : S ∈ argmax

S∈I
∑
θ∈Θ

ξ(θ)rθ(S)
«
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Result (2): When |Θ| is a constant
Assume rθ(·) is linear, i.e., rθ(S) =∑i∈S rθ({i}) and sθ(·) is given by a value oracle
Uniform matroids

{ , } { , }
{ , }

{ , }
　　

　　
　　

　　
θ1 θ2∆Θ

For each posterior ξ ∈ ∆Θ,
selecting top-k elements is best
↓
k-level faces enumeration [Mulmuley’91]
studied in computational geometry

Lemma
Under a certain degeneracy assumption, |I∗| = O(|E||Θ|−1)
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Result (2): When |Θ| is a constant
General matroids

Erθ({1}) > Erθ({2})

Erθ({1}) < Erθ({2})Erθ({1}) < Erθ({3})

Erθ({1}) > Erθ({3})

Erθ({2}) < Erθ({3})Erθ({2}) > Erθ({3})
θ1 θ2

θ3

{1,3}is best
{1,2}is best

{2,3}is best

For each posterior ξ ∈ ∆Θ,
the ranking of Erθ({·}) determines the
best response
↓
cell enumeration in an arrangement of
hyperplanes [Edelsbrunner’87]

Lemma
Under a certain degeneracy assumption, |I∗| = O(|E|2(|Θ|−1))
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Result (2): When |Θ| is a constant
Partition matroids
It is sufficient to consider the ranking in each partition
|I∗| = O(|E|2(|Θ|−1)/P(|Θ|−1)), where P is the number of partitions

Graphic matroids
The enumeration is reduced to the parametric spanning tree problem
|I∗| = O(|E||V |1/3) when |Θ| = 2, where V is the set of vertices [Dey’98]
Paths
Even if |Θ| = 2, there exists an instance such that |I∗| = |E|Ω(log |E|)

[Carstensen’83]
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Result (3): CCE-persuasiveness
In the CCE-persuasiveness setting, the receiver selects either of:

following the signal
�
the expected utility is ∑

θ∈Θ

∑
S∈I

μ(θ)φθ(S)rθ(S)
�

not receiving the signal
�
the expected utility is max

S∈I
∑
θ∈Θ

μ(θ)rθ(S)
�

maximize ∑
θ∈Θ

∑
S∈I

μ(θ)φθ(S)sθ(S)

subject to ∑
θ∈Θ

∑
S∈I

μ(θ)φθ(S)rθ(S) ≥ max
S∈I
∑
θ∈Θ

μ(θ)rθ(S)

CCE-persuasiveness constraints
φθ ∈ ∆I (θ ∈ Θ)
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Result (3): CCE-persuasiveness
Theorem (informal)
If we have an oracle that, for any y ≥ 0 and θ ∈ Θ, returns S ∈ I s.t.

sθ(S) + y · rθ(S) ≥ max
S′∈I α · sθ(S

′) + y · rθ(S′),
then we can compute an (α − ε)-approximation for any ε ∈ (0, α)
ProofProof Consider a separation oracle for the dual LP
ApplicationsApplications

sθ, rθ: linear, I: matroid, α = 1

sθ: monotone submodular, rθ: linear, I: matroid, α = 1− 1/e
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Summary of our contributions
QQ Is it possible to efficiently compute an optimal signaling strategy
QQ for Bayesian persuasion with combinatorial actions?
Our resultsOur results
1 NP-hardness of constant-factor approximations
2 Poly-time algorithms when the number of states is a constant
3 Poly-time algorithms for CCE-persuasiveness
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