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Bayesian persuasion

A game-theoretic model of strategic information revelation

for how to lead an agent to a preferred action

CEVCHELRLIAIENLOE [Kamenica-Gentzkow'11]

Q 5 ) Decide
The action affects - an action

Sender the sender’s utility Receiver

n How to compute an optimal signaling strategy?
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n What is an optimal signaling strategy for the company?

oThe state is ‘ Good with prob. 1
revealed Bad with prob. %
Product
° Recommend the product or not

Decide whether

|| B TP 't
e Obtain a profit to buy or not
company Customer Follow the
A A recommendation
Want to sell products Want to buy if at least half of

as many as possible good products | products are good
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m Recommend all good products and half of bad products

==p Customer buys % of all products
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Product Company Customer

1
1 3
Prob. 5 GoodZ Recommend ——> Buy
2 N
Prob. £ Bad T Not recommend —> Not buy
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Good o Bad
with prob. 1 with prob. 1

Good with prob. %

Bad with prob. %
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Receiver’s utility of Receiver’s utility of
buying . not buying
Good ° Bad
with prob. 1 with prob. 1

Buy 4——} Not buy
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oThe state O is The state of nature 8 € © is
revealed
Natute

generated from prior u € Ag

°Recommend o~ o€y 9

o Ox Decideae A
!!!!!!!! B X o o
Obtain sg(a) . ITEg~g, o0
Ser}\der Recilver > Egor,[ro(0”)]
/
Maximize so(a) Maximize rg(a) | 07 3N @’ € A

% signaling scheme (¢g)oco is declared in advance
(commitment assumption)
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Computation of an optimal strategy can be formulated as LP

maximize > > 1(6)do(a)se(a)

(®e)ece  gco aea
= Eo~p,a~0pe[Se(a)] Sender’'s expected utility

subject to Z 1(8)pe(a)(re(a)—re(a’)) =0 (a,da’ € A)
LIS}
& Eo~g,[ro(a)] = Eo~g,[ro(a’)] persuasiveness constraints

boeA,s (0€O)
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(1) Buy multiple products

Ads Y
----------------------------- ; «.
Profit = 2 =
Company Customer Buy k products

(2) Choose a path

Recommend a path 5> / :
(. ................... RLLLILELL e > /

Solve congestion
Navigation Car

system

Choose a path fromsto ¢
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Receiver's action is a combination of elements in a finite set £

i.e., A=7, where T C 2f is a set family

SN
= [=] ~ =] A/

Buy k products Choose a path fromstot
E is the set of products E is the set of edges
I={SCE||S|<k} Z=A{SCE|s-tpath}

uniform matroid constraints path constraints
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Consider a recommendation of combinatorial action S € 7 C 2f

°The state O is The state of nature 8 € © is
revealed .
Natute

generated from prior u € Ag

a Recommend S ~ ¢g € A7

D ) ' Decide S5€T
. if Eg~gs[ro(S)]
Obtain sg(5*) . Tho~&s
Sender e Receiver > Fo~gc[ro(S)]
A A /
forany S’ €7

Maximize sg(S) Maximize rg(S)
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LP with exponentially many variables and constraints

maximize Z Zu )se(S) Sender’s expected utility
(®0)ece  o=5 57

subjectto > p(8)da(S) (re(S)—re(S')) =0 (5,5 €1)
9<o persuasiveness constraints

Qo € A7 (96@)

n Is it possible to solve this LP in time polynomial in |E|?
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n Is it possible to efficiently compute an optimal signaling strategy

for Bayesian persuasion with combinatorial actions?

o NP-hardness of constant-factor approximations
9 Poly-time algorithms when the number of states is a constant

e Poly-time algorithms for CCE-persuasiveness
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Constant-factor approximation is NP-hard for simple constraints

For any a € (0, 1], it is NP-hard to compute an a-approximate signaling

scheme for Bayesian persuasion with any of
® uniform matroid constraints
@ partition matroid constraints
@ graphic matroids constraints
® path constraints

if the utility functions are linear, i.e., so(S) = X.ies So({i}) and ro(S) = Xjes ro({i})




Result (1): NP-hardness

B Partition matroids

Reduction from public Bayesian persuasion with no externalities
[Dughmi-Xu'17]

B Uniform matroids, Graphic matroids, Paths
Reduction from LINEQ-MA(1 — ¢, 6) [Guruswami-Raghavendra'09]
A

Given a linear system Ax = ¢, the promise problem of distinguishing

- there exists x € {0, 1}" that satisfies at least a 1 — £ fraction of the equations

- every x € Q" satisfies less than a é fraction of the equations

based on the reduction for OptSignal [Castiglioni-Celli-Marchesi-Gatti'20]
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We need to consider combinations that can be a best response

Yoco H(0)9o(S) (re(S)—re(S')) =0 (5,S'€I) _
persuasiveness constraints
& S € argmax E U(B)do(S)ro(S) foreachS e

S€T  geo
S is a best response for posterior Es(0) o« u(0)¢e(S)

Observation
In the LP formulation, instead of Z, it is sufficient to consider

I*:{SGI

3E € No: S € argmax Y | E(G)re(S)}

€T geo
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Assume rg(+) is linear, i.e., ro(S) = X jes ro({i}) and sg(+) is given by a value oracle
B Uniform matroids
) {‘!,iaf'}{!,@} For each posterior § € Ag,

53 selecting top-k elements is best

; l
‘w

k-level faces enumeration [Mulmuley'91]

*% studied in computational geometry

Under a certain degeneracy assumption, |Z*| = O(|E|!®I=1)
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B General matroids

03 For each posterior § € Ag,

Ero({1}) <Ere({3}) Ero({1}) < Ere({2}) the ranking of Erg({-}) determines the

best response
Ere({1}) > Ere({3) X
£1,23 {1'3}'_ o({1}) > Ere({2}) l

is best]f is best cell enumeration in an arrangement of

01 0>
Ere({2}) > Ere({3}) ﬁL Ero({2}) < Era({3}) hyperp|anes [Edelsbrunner'87]

Under a certain degeneracy assumption, |Z*| = O(|E[2(1®1=1))
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B Partition matroids
It is sufficient to consider the ranking in each partition
=P |7*| = O(|E|2(°I=1)/p(®1=1)) 'where P is the number of partitions

B Graphic matroids
The enumeration is reduced to the parametric spanning tree problem
|Z*| = O(|E||V]"/3) when |©] = 2, where V is the set of vertices [Dey98]

B Paths

Even if |©] = 2, there exists an instance such that [Z*| = |E|(os|ED
[Carstensen’83]
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In the CCE-persuasiveness setting, the receiver selects either of:

® following the signal (the expected utility is Z Zu(e)tpg(S)rg(S))

6e€© SeT

® not receiving the signal (the expected utility is max Z u(@)re(S))
< beo

maximize > > u(8)de(S)sa(S)

6eo Sez
subject to Z Zu Yo (S)ro(S) = max Z u(e
0eo Sez 96@

CCE-persuasiveness constraints
Qo € Az (9 € @)
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Theorem (informal)
If we have an oracle that, foranyy > 0and 6 € ©, returns S € Z s.t.

se(S)+y-re(S) = ?)2%0’ -se(S") +y-re(S),

then we can compute an (a — €)-approximation for any € € (0, a)

Consider a separation oracle for the dual LP

Applications

W s, rg: linear, Z: matroid, o = 1

B sp: monotone submodular, rg: linear, Z: matroid, a =1—1/e
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n Is it possible to efficiently compute an optimal signaling strategy

for Bayesian persuasion with combinatorial actions?

o NP-hardness of constant-factor approximations
9 Poly-time algorithms when the number of states is a constant

e Poly-time algorithms for CCE-persuasiveness
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