The power of mediators: Price of anarchy and stability in Bayesian games with submodular social welfare

Kaito Fujii (National Institute of Informatics)

10 July 2025 @ EC 2025

Resources chosen by multiple players are partitioned in a prespecified way

2/23

Resources chosen by multiple players are partitioned in a prespecified way

Example: 💿 is prioritized over 🧕

No player can benefit from deviations ⊲介

Worst **Nash equilibrium** = 1

Resources chosen by multiple players are partitioned in a prespecified way

Example: 😨 is prioritized over 👮

Optimal social welfare = 2

Resources chosen by multiple players are partitioned in a prespecified way Example: o is prioritized over oNo player can benefit from deviations $\triangleleft \textcircled{o}$ PoA := $\frac{\text{Worst Nash equilibrium}}{\text{Optimal social welfare}} = \frac{1}{2}$

Resources chosen by multiple players are partitioned in a prespecified way Example: o is prioritized over oNo player can benefit from deviations $\triangleleft \textcircled{o}$ PoA $\coloneqq \frac{\text{Worst Nash equilibrium}}{\text{Optimal social welfare}} = \frac{1}{2}$

Theorem [Vetta 2002]

 $\mathrm{PoA} \geq 0.5$ in any valid utility game

Example of valid utility games

How good or bad social welfare can be achieved by mediators

Q

Example of valid utility games

How good or bad social welfare can be achieved by mediators

Q

A mediator 🤮 sends recommendations (🧝 realizes correlated equilibrium)

Example of valid utility games

Theorem [Roughgarden 2015]

 $PoA \ge 0.5$ in any valid utility game for **correlated equilibria**

The set of actions for each player changes depending on their type

Q How do mediators 🤬 work in Bayesian games?

The set of actions for each player changes depending on their type

The set of actions for each player changes depending on their type

Various Bayes correlated equilibria [Forges'93] 5/ 23

Bayes correlated equilibria (= correlated eq. in Bayesian games) have many variants with various communication protocols

Bayesian solution

Agentnormalform CE **Strategic-form CE**

Bayes Nash equilibria Communi -cation equilibria

Communication equilibria [Myerson'82, Forges'86]

Equilibria realized by 🤮 with bidirectional communication

Each player privately tells their types to the mediator 🧝

2 The mediator 🧝 privately sends a recommendation to each player

Communication equilibria [Myerson'82, Forges'86]

Equilibria realized by 🤮 with bidirectional communication

 \leftarrow No incentive to tell an untrue type

The mediator 🧝 privately sends a recommendation to each player

Communication equilibria [Myerson'82, Forges'86]

Equilibria realized by 🤬 with bidirectional communication

 \leftarrow No incentive to tell an untrue type

The mediator 🧝 privately sends a recommendation to each player

← No incentive to disobey the recommendation

The mediator 🧝 privately sends a recommendation to each player

Mediator A knows the true types in advance 1 Each player privately tells their true types to the mediator A knows Each player privately tells their true types to the mediator A knows I prefer I prefer I prefer I prefer I prefer 2 The mediator A privately sends a recommendation to each player

 \leftarrow No incentive to disobey the recommendation

Our results

For various equilibrium concepts, we provide PoA and PoS bounds

under the basic utility assumption

We also obtained PoA and PoS bounds for the correlated prior case

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

Other results

Notations for Bayesian games

$$\begin{split} N &= \{1, 2, \dots, n\} \text{ players} & N &= \{\widehat{\underline{a}}, \widehat{\odot}\} \\ \Theta_i \text{ finite set of types for player } i \in N & \Theta_{\widehat{\underline{a}}} &= \Theta_{\widehat{\underline{o}}} &= \{\widehat{\underline{\bullet}}, \widehat{\underline{\bullet}}\} \\ A_i^{\theta_i} \text{ finite set of actions for player } i \in N \text{ with type } \theta_i \in \Theta_i & A_{\widehat{\underline{o}}}^{\widehat{\underline{o}}} &= \{\overline{\underline{m}}, \widehat{\underline{\bullet}}\} \\ \Theta &= \prod_{i \in N} \Theta_i \text{ type profiles} \\ \rho \in \Delta(\Theta) \text{ prior distribution over type profiles} & \rho(\widehat{\underline{\bullet}}, \widehat{\underline{\bullet}}) &= 1/4 \end{split}$$

10/23

Notations for Bayesian games

 $N = \{1, 2, ..., n\}$ players $N = \{ 0, 0 \}$ Θ_i finite set of types for player $i \in N$ $\Theta_{\textcircled{a}} = \Theta_{\textcircled{a}} = \{\textcircled{b}, \textcircled{b}\}$ $A^{\textcircled{2}} = \{\blacksquare, \textcircled{3}\}$ $A_i^{\theta_i}$ finite set of actions for player $i \in N$ with type $\theta_i \in \Theta_i$ $\Theta = \prod_{i \in N} \Theta_i$ type profiles $\rho \in \Delta(\Theta)$ prior distribution over type profiles $\rho(\textcircled{2}, \textcircled{2}) = 1/4$ Two settings in this study • ρ is **independent** ($\exists \theta_i \in \Delta(\Theta_i)$ for each $i \in N$ s.t. $\rho(\theta) = \prod \rho_i(\theta_i)$ for all $\theta \in \Theta$)

 $i \in N$

• ρ is **correlated** (no assumption on ρ)

Submodular social welfare functions

11/23

Let $E = \bigcup_{i \in N} \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i}$ be the set of all possible actions

Let
$$E = \bigcup_{i \in N} \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i}$$
 be the set of all possible actions

Assumption [Vetta 2002]

The social welfare function $f: 2^E \to \mathbb{R}$ is assumed to be

- **non-negative**: $f(X) \ge 0$ for any $X \subseteq E$
- **monotone**: $f(X \cup \{v\}) \ge f(X)$ for any $X \subseteq E$ and $v \in E$
- submodular: $f(X \cup \{v\}) f(X) \ge f(Y \cup \{v\}) f(Y)$

for any $X \subseteq Y \subseteq E$ and $v \in E \setminus Y$

11/23

The marginal contribution to social welfare of each action decreases as other actions are added

decreases as other actions are added

$$f(\{\square_{\textcircled{2}}\}) - f(\{\})$$

The increase in social welfare when no one attended yet

decreases as other actions are added

 $f(\{ \square_{\textcircled{2}}\}) - f(\{\})$

The increase in social welfare when no one attended yet

The increase in social welfare when other players already attended

decreases as other actions are added

The increase in social welfare when no one attended yet

The increase in social welfare when other players already attended

decreases as other actions are added

The increase in social welfare when no one attended yet

The increase in social welfare when other players already attended

Intuitively, this assumption is **substitutability** among players' actions

* Note that we assume this property even among the same player's actions

$$v_i \colon A \to \mathbb{R}_{\geq 0}$$
 utility function for each player $i \in N$,
where $A = \prod_{i \in N} \left(\bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$ is the set of all possible action profiles

$$v_i \colon A \to \mathbb{R}_{\geq 0}$$
 utility function for each player $i \in N$,
where $A = \prod_{i \in N} \left(\bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$ is the set of all possible action profiles

Assumption [Vetta 2002]

•
$$\sum_{i \in N} v_i(a) \le f(\{a_1, \dots, a_n\})$$
 for any $a \in A$ (total utility condition)

•
$$v_i(a) \ge f(\{a_1, \ldots, a_n\}) - f(\{a_j \mid j \in N \setminus \{i\}\})$$
 for any $i \in N$ and $a \in A$

(marginal contribution condition)

$$v_i \colon A \to \mathbb{R}_{\geq 0}$$
 utility function for each player $i \in N$,
where $A = \prod_{i \in N} \left(\bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$ is the set of all possible action profiles

Assumption [Vetta 2002]

•
$$\sum_{i \in N} v_i(a) \le f(\{a_1, \dots, a_n\})$$
 for any $a \in A$ (total utility condition)

•
$$v_i(a) \ge f(\{a_1, \dots, a_n\}) - f(\{a_j \mid j \in N \setminus \{i\}\})$$
 for any $i \in N$ and $a \in A$

(marginal contribution condition)

The contribution of $\frac{1}{2}$ is at least $f(\square) - f(\square) = 0$

🖻 Example: 💿 gets all, 🚊 gets all, two players share equally, or both get 0

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

Other results

15/23

For an equilibrium class $\Pi \subseteq \Delta(A)^{\Theta}$, PoA is defined as

Challenge optimal action a_i^* depends on the other players' types θ_{-i}

Strategy-representability gap (SR gap)

Strategy-representability gap (SR gap)

16/23

16/23

17/23

For each player, one block is chosen according to a known distribution

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \stackrel{\triangle}{=} \frac{Choose \text{ one element from each block, and then blocks are selected}}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \triangleq \frac{Choose one element from each block, and then blocks are selected}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \triangleq \frac{Choose one element from each block, and then blocks are selected}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \triangleq \frac{Choose \text{ one element from each block, and then blocks are selected}}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \triangleq \frac{Choose \text{ one element from each block, and then blocks are selected}}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \stackrel{\triangle}{=} \frac{Choose \text{ one element from each block, and then blocks are selected}}{Blocks are selected, and then choose one element from each block}$

17/23

For each player, one block is chosen according to a known distribution

 $SRgap \stackrel{\triangle}{=} \frac{Choose \text{ one element from each block, and then blocks are selected}}{Blocks are selected, and then choose one element from each block}$

SR gap lower bound (independent case)

Theorem

If ρ is independent, $\operatorname{SRgap} \geq 1 - 1/e$, and this bound is tight

Lower bound based on the correlation gap bound [Vondrák'07]

Upper bound

Optimal social welfare: n

 \therefore There exists a perfect matching w.h.p.

18/23

Optimal strategy profile: pprox (1-1/e)n

∴ The expected probability that each resource is chosen can be upper-bounded

SR gap lower bound (correlated case)

Theorem

 $\operatorname{SRgap} = \Omega(1/\sqrt{n})$, and this bound is tight

Lower bound

Upper bound

$$\Theta_1=\dots=\Theta_n=[n]^k$$
, where $k=\sqrt{n}$ $j\sim [k]$ and $\ell_1,\dots,\ell_k\sim [n]$

Types $\{(\ell_1, \ldots, \ell_{j-1}, t, \ell_{j+1}, \ldots, \ell_k) \mid t \in [n]\}$ are randomly assigned to n players

 $E = [n] \times [k]$ set of resources The *h*th action of type ℓ is to choose $(h, \ell_h) \in E$

19/23

Optimal social welfare: n

Optimal strategy profile: $\leq k + n/k = 2\sqrt{n}$

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

Other results

Improved PoA lower bound for com. eq.

Proposition

If ho is independent, $\mathrm{PoA_{Com.Eq.}} \geq 0.5$, which improves on the SR-gap approach

21/23

Based on the smoothness arguments for Bayes–Nash equilibria [Roughgarden'15, Syrgkanis'12]

The key step of their proof:

Swapping θ_i and θ_i' in $\theta \sim \rho$ and $\theta' \sim \rho$ using the independence of ρ

 \leftarrow Incentive constraints for misreporting θ'_i instead of θ_i can be used

The same result also holds for agent-normal-form CE

PoA upper bound for Bayesian solutions

Proposition

 $\mathrm{PoA}_\mathrm{BS} \leq rac{1-1/\sqrt{e}}{3/2-1/\sqrt{e}} pprox 0.4403$ for some example with independent ho

Odd players are connected to all resources Even players are connected to random one Odd players are prioritized over even ones

Bad Bayesian solution:

Each (2k - 1)th player is recommended to choose the (2k)th player's action

Optimal:
$$\approx \underbrace{n/2}_{\text{even}} + \underbrace{(1 - 1/\sqrt{e})n}_{\text{odd}},$$

Bayesian solution:
$$\approx (1 - 1/\sqrt{e})n$$

Our results

For various equilibrium concepts, we provide PoA and PoS bounds

under the basic utility assumption

We also obtained PoA and PoS bounds for the correlated prior case

Reference

- Françoise Forges. 1986. An approach to communication equilibria. *Econometrica*, 1375–1385.
- Françoise Forges. 1993. Five legitimate definitions of correlated equilibrium in games with incomplete information. *Theory and Decision* 35, 277–310.
- John C. Harsanyi. 1967. Games with Incomplete Information Played by "Bayesian" Players, I–III. *Management Science* 14(3):159–182, 14(5):320–334, 14(7):486–502.
- Tim Roughgarden. 2015a. Intrinsic Robustness of the Price of Anarchy. *Journal of the ACM* 62(5), 32:1–32:42.
- Tim Roughgarden. 2015b. The Price of Anarchy in Games of Incomplete Information. *ACM Transactions* on *Economics and Computation* 3(1), 6:1–6:20.
- Adrian Vetta. 2002. Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In *FOCS 2002*. 416–425.
- Jan Vondrák. 2007. Submodularity in combinatorial optimization. Ph.D. Dissertation.
- Illustrations: "Twemoji" by Twitter, Inc and other contributors is licensed under CC BY 4.0

Types $\theta = (\theta_1, \dots, \theta_n)$ are generated from prior distribution $\rho \in \Delta(\Theta)$

- All players know ρ as common knowledge
- Each player $i \in N$ knows their own type θ_i but not the others' $\theta_{-i} = (\theta_j)_{j \in N \setminus \{i\}}$

Two settings in this study

- ρ is **independent** ($\exists \theta_i \in \Delta(\Theta_i)$ for each $i \in N$ s.t. $\rho(\theta) = \prod_{i \in N} \rho_i(\theta_i)$ for all $\theta \in \Theta$)
 - Types represent each player's preferences or attributes
- ρ is **correlated** (no assumption on ρ)
 - Types represent each player's weather or traffic conditions

Marginal gain of each elem. decreases as elements are obtained

 $f(v|X) \triangleq f(X \cup \{v\}) - f(X)$

marginal gain of adding $v \in E$ to $X \subseteq E$

 $f: 2^E \to \mathbb{R}$ is submodular \Leftrightarrow For all $X \subseteq Y$ with $X, Y \subseteq E$ and $v \in E \setminus Y$, we have $f(v|X) \ge f(v|Y)$

e.g.)
$$X = \{ \ge \}, Y = \{ \ge \}, \blacksquare \}$$
 and $v = \heartsuit$
 $f(\{ \heartsuit, \ge \}) - f(\{ \ge \}) \ge f(\{ \heartsuit, \ge \}, \blacksquare \}) - f(\{ \ge \}, \blacksquare \})$

The function value is non-decreasing when elements are added

 $f(v|X) \triangleq f(X \cup \{v\}) - f(X)$

marginal gain of adding $v \in E$ to $X \subseteq E$

 $f: 2^E \to \mathbb{R}$ is monotone \Leftrightarrow For all $X \subseteq E$ and $v \in E$, we have $f(v|X) \ge 0$

e.g.)
$$X = \{ \geq, \blacksquare \}$$
 and $v =$ $f(\{ \heartsuit, \geq, \blacksquare \}) - f(\{ \geq, \blacksquare \}) \ge 0$

Summary

For various equilibrium	concepts, we prov	vide PoA and PoS bounds

	BNE, SF/ANFCE, ANF/SFCCE	Com.Eq.	BS, ANF/SFCBS
PoA (v, i)	1/2	1/2	$\in \left[rac{1-1/e}{2}, 0.441 ight]$
PoA (v, c)	$\Theta\left(\frac{1}{\sqrt{n}}\right)$	$\Theta\left(\frac{1}{\sqrt{n}}\right)$	$\Theta\left(\frac{1}{\sqrt{n}}\right)$
PoS (b, i)	1-1/e	$\leq 4/5$	1
PoS (b, c)	$\Theta\left(\frac{1}{\sqrt{n}}\right)$	$\Omega\left(\frac{1}{\sqrt{n}}\right)$	1
		/"=valid utility g	ames, "b"=basic utility games,
	"i"=type prior distribut	ion ρ is independent	ndent, "c"= ρ can be correlated
Bayes–Nas	Communication	Devesion	ANFCBS -> SFCBS
equilibria	SFCE — ANFCE		► ANFCCE → SFCCE

Communication equilibria

 $N = \{1, 2, ..., n\}$ players $N = \{ 2, 0 \}$ Θ_i finite set of types for player $i \in N$ $\Theta_{\textcircled{a}} = \Theta_{\textcircled{a}} = \{\textcircled{b}, \textcircled{b}\}$ $A_i^{\theta_i}$ finite set of actions for player $i \in N$ with type $\theta_i \in \Theta_i$ $A_{\bullet}^{\textcircled{0}} = \{ \square, \textcircled{w} \}$ $\Theta = \prod_{i \in N} \Theta_i$ type profiles $\rho \in \Delta(\Theta)$ prior distribution over type profiles $\rho(\textcircled{O}, \textcircled{O}) = 1/4$ A distribution $\pi \in \prod_{\theta \in \Theta} \Delta(A^{\theta})$ is a communication equilibrium if for any $i \in N$, $\theta_i, \theta'_i \in \Theta_i$, and $\phi: A_i^{\theta'_i} \to A_i^{\theta_i}$, it holds that $\mathbb{E}_{\substack{\theta_{-i} \sim \rho \mid q_{\cdot}}} \left| \mathbb{E}_{a \sim \pi(\theta)} \left[v_{i}(a) \right] \right| \geq \mathbb{E}_{\substack{\theta_{-i} \sim \rho \mid q_{\cdot}}} \left[\mathbb{E}_{a \sim \pi(\theta', \theta_{-i})} \left[v_{i}(\phi(a_{i}), a_{-i}) \right] \right].$