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Players simultaneously choose a resource to share

　　 　　

　　 　　　　 　　

Resources chosen by multiple players are
partitioned in a prespecified way
Example:　　 is prioritized over　　

PoA
(price of
anarchy)

:=
Worst Nash equilibrium△ ⇔

No player can benefit from deviations

Optimal social welfare = 1
2

=
=

Theorem [Vetta 2002]
PoA ≥ 0.5 in any valid utility game
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QQ How good or bad social welfare can be achieved by mediators

　　 　　

　　 　　

A mediator　　 sends recommendations
(　　 realizes correlated equilibrium)

　　　　 　　
Go to　　Go to　　

Theorem [Roughgarden 2015]
PoA ≥ 0.5 in any valid utility game for correlated equilibria
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The set of actions for each player changes depending on their type
　　 　　 　　 　　

　　 　　 　　 　　　　 　　 　　 　　with prob.
0.5

with prob.
0.5

with prob.
0.5

with prob.
0.5

with probability 1/4

　　 does not know　　’s type
　　 does not know　　’s type

　　 　　　　 　　

with probability 1/4

　　 does not know　　’s type
　　 does not know　　’s type

　　 　　　　 　　

QQ How do mediators　　 work in Bayesian games?
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Bayes correlated equilibria (= correlated eq. in Bayesian games)
have many variants with various communication protocols

BayesNash equilibria
Strategic-form CE Communi-cationequilibria

Agent-normal-formCE

Bayesian solution

Various Bayes correlated equilibria [Forges’93] 5/ 23



Equilibria realized by　　 with bidirectional communication
1 Each player privately tells their types to the mediator　　

← No incentive to tell an untrue type

　　 　　　　
I prefer　　I prefer　　

2 The mediator　　 privately sends a recommendation to each player

← No incentive to disobey the recommendation

　　 　　　　
Go to　　Go to　　

Communication equilibria [Myerson’82, Forges’86] 6/ 23
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Mediator　　 knows the true types in advance
1 Each player privately tells their true types to the mediator　　
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For various equilibrium concepts, we provide PoA and PoS bounds
PoA bounds for independent priorsPoA bounds for independent priors

Strategic
-form CE

Agent-normal
-form CE

Communication
equilibrium

Bayesian
solution

PoA = 0.5

PoA ∈ [0.316, 0.441]

PoS bounds for independent priorsPoS bounds for independent priors

Strategic
-form CE

Agent-normal
-form CE

Communication
equilibrium

Bayesian
solution

PoS = 1− 1/e

PoS ∈ [1− 1/e, 0.8] PoS = 1

under the basic utility assumption
We also obtained PoA and PoS bounds for the correlated prior case

Our results 8/ 23



Our setting: Bayesian valid utility games
Our technique: Strategy-representability gap
Other results

Table of Contents 9/ 23



N = {1, 2, . . . , n} players N = { , }

Θi finite set of types for player i ∈ N Θ = Θ = { , }

Aθi
i finite set of actions for player i ∈ N with type θi ∈ Θi A = { , }

Θ = ∏
i∈N Θi type profiles

ρ ∈ ∆(Θ) prior distribution over type profiles ρ( , ) = 1/4

Two settings in this studyTwo settings in this study
ρ is independent (∃θi ∈ ∆(Θi) for each i ∈ N s.t. ρ(θ) = ∏

i∈N

ρi(θi) for all θ ∈ Θ)
ρ is correlated (no assumption on ρ)

Notations for Bayesian games 10/ 23
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Let E =
⋃
i∈N

⋃
θi∈Θi

Aθi
i be the set of all possible actions

Assumption [Vetta 2002]
The social welfare function f : 2E → R is assumed to be
- non-negative: f(X) ≥ 0 for any X ⊆ E

- monotone: f(X ∪ {v}) ≥ f(X) for any X ⊆ E and v ∈ E

- submodular: f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y )

for any X ⊆ Y ⊆ E and v ∈ E \ Y

Submodular social welfare functions 11/ 23
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The marginal contribution to social welfare of each action
decreases as other actions are added

f ({ })− f ({})

The increase in social welfare
when no one attended yet

f ({ , })− f ({ })

The increase in social welfare
when other players already attended

Intuitively, this assumption is substitutability among players’ actions
Note that we assume this property even among the same player’s actions
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vi : A→ R≥0 utility function for each player i ∈ N ,
where A =

∏
i∈N

( ⋃
θi∈Θi

Aθi
i

)
is the set of all possible action profiles

Assumption [Vetta 2002]∑
i∈N

vi(a) ≤ f({a1, . . . , an}) for any a ∈ A (total utility condition)
vi(a) ≥ f({a1, . . . , an})− f({aj | j ∈ N \ {i}}) for any i ∈ N and a ∈ A

(marginal contribution condition)
　　 　　

　　 　　

The sum of utility values is at most f( )
The contribution of　　 is at least f( )− f( ) = 0
Example: 　　 gets all,　　 gets all, two players share equally, or both get 0

Bayesian valid utility games 13/ 23
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Our setting: Bayesian valid utility games
Our technique: Strategy-representability gap
Other results
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For an equilibrium class Π ⊆ ∆(A)Θ, PoA is defined as

PoAΠ
△=

inf
π∈Π

E
θ∼ρ

[
E

a∼π(θ)
[vSW(a)]

]

E
θ∼ρ

[
max
a∗∈Aθ

vSW(a∗)
]

by the worst equilibriumthe social welfare achieved

the optimal social welfare

optimal action a∗i depends on the other players’ types θ−iChallenge

Price of anarchy (PoA) in Bayesian games 15/ 23
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E
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[
E

a∼π(θ)
[vSW(a)]

]

E
θ∼ρ
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max
a∗∈Aθ

vSW(a∗)
]

PoAΠ =
inf
π∈Π

E
θ∼ρ

[
E

a∼π(θ)
[vSW(a)]

]
max
s∗∈S

E
θ∼ρ

[vSW(s∗(θ))]︸ ︷︷ ︸reduced tothe non-Bayesian case

·
max
s∗∈S

E
θ∼ρ

[vSW(s∗(θ))]

E
θ∼ρ

[
max
a∈Aθ

vSW(a)
]

︸ ︷︷ ︸SR gap

by the worst equilibriumthe social welfare achieved

the optimal social welfare

by the optimal strategy profilethe social welfare achieved

Si =
∏

θi∈Θi

Aθi
i the set of strategies for i ∈ N

si ∈ Si determines an action si(θi) for θi
S

△=
∏
i∈N

Si and s(θ) △= (s1(θ1), . . . , sn(θn))

Strategy-representability gap (SR gap) 16/ 23
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Aθ1
1

A
θ′2
2 A

θ′3
3

Aθ2
2 Aθ3

3

A
θ′1
1

Player 1 Player 2 Player 3

For each player, one block is chosen according to a known distribution
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Theorem
If ρ is independent, SRgap ≥ 1− 1/e, and this bound is tight
Lower boundLower bound based on the correlation gap bound [Vondrák’07]
Upper boundUpper bound
　　 　　 . . . 　　 　　

　　 　　 . . . 　　 　　

Each player is connected torandomly chosen log n resources

Optimal social welfare: n
∵ There exists a perfect matching w.h.p.
Optimal strategy profile: ≈ (1− 1/e)n
∵ The expected probability that each
resource is chosen can be upper-bounded

SR gap lower bound (independent case) 18/ 23



Theorem
SRgap = Ω(1/

√
n), and this bound is tight

Lower boundLower bound (complicated)
Upper boundUpper bound Θ1 = · · · = Θn = [n]k, where k =

√
n j ∼ [k] and ℓ1, . . . , ℓk ∼ [n]

Types {(ℓ1, . . . , ℓj−1, t, ℓj+1, . . . , ℓk) | t ∈ [n]} are randomly assigned to n players

　　
　　
　　
　　

　　
　　
　　
　　

　　
　　
　　
　　

　　
　　
　　
　　

1st action
　　 　　 　　 　　
　　 　　 　　 　　
　　 　　 　　 　　
　　 　　 　　 　　

2nd action

E = [n]× [k] set of resources
The hth action of type ℓ is to choose (h, ℓh) ∈ E

Optimal social welfare: n
Optimal strategy profile: ≤ k + n/k = 2

√
n

SR gap lower bound (correlated case) 19/ 23



Our setting: Bayesian valid utility games
Our technique: Strategy-representability gap
Other results
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Proposition
If ρ is independent, PoACom.Eq. ≥ 0.5, which improves on the SR-gap approach
Based on the smoothness arguments for Bayes–Nash equilibria

[Roughgarden’15, Syrgkanis’12]
The key step of their proof:
Swapping θi and θ′i in θ ∼ ρ and θ′ ∼ ρ using the independence of ρ
← Incentive constraints for misreporting θ′i instead of θi can be used
RemarkRemark The same result also holds for agent-normal-form CE

Improved PoA lower bound for com. eq. 21/ 23



Proposition
PoABS ≤

1− 1/
√
e

3/2− 1/
√
e
≈ 0.4403 for some example with independent ρ

　　 　　 . . . 　　 　　

　　 　　 . . . 　　 　　

Odd players are connected to all resources
Even players are connected to random one
Odd players are prioritized over even ones
Bad Bayesian solution:
Each (2k − 1)th player is recommended
to choose the (2k)th player’s action

Optimal: ≈ n/2︸︷︷︸even
+(1− 1/

√
e)n︸ ︷︷ ︸odd

, Bayesian solution: ≈ (1− 1/
√
e)n

PoA upper bound for Bayesian solutions 22/ 23



For various equilibrium concepts, we provide PoA and PoS bounds
PoA bounds for independent priorsPoA bounds for independent priors

Strategic
-form CE

Agent-normal
-form CE

Communication
equilibrium

Bayesian
solution

PoA = 0.5

PoA ∈ [0.316, 0.441]

PoS bounds for independent priorsPoS bounds for independent priors

Strategic
-form CE

Agent-normal
-form CE

Communication
equilibrium

Bayesian
solution

PoS = 1− 1/e

PoS ∈ [1− 1/e, 0.8] PoS = 1

under the basic utility assumption
We also obtained PoA and PoS bounds for the correlated prior case

Our results 23/ 23
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- Jan Vondrák. 2007. Submodularity in combinatorial optimization. Ph.D. Dissertation.
- Illustrations: ”Twemoji” by Twitter, Inc and other contributors is licensed under CC BY 4.0

Reference 1/ 6

https://twemoji.twitter.com/
https://creativecommons.org/licenses/by/4.0/


Types θ = (θ1, . . . , θn) are generated from prior distribution ρ ∈ ∆(Θ)

- All players know ρ as common knowledge
- Each player i ∈ N knows their own type θi but not the others’ θ−i = (θj)j∈N\{i}

Two settings in this studyTwo settings in this study
ρ is independent (∃θi ∈ ∆(Θi) for each i ∈ N s.t. ρ(θ) = ∏

i∈N

ρi(θi) for all θ ∈ Θ)
- Types represent each player’s preferences or attributes

ρ is correlated (no assumption on ρ)
- Types represent each player’s weather or traffic conditions

Type prior distribution 2/ 6



Marginal gain of each elem. decreases as elements are obtained
f(v|X) ≜ f(X ∪ {v})− f(X)

marginal gain of adding v ∈ E to X ⊆ E

f : 2E → R is submodular
△⇔ For all X ⊆ Y with X,Y ⊆ E and v ∈ E \ Y , we have f(v|X) ≥ f(v|Y )

e.g.) X = { }, Y = { , } and v =

f({ , })− f({ }) ≥ f({ , , })− f({ , })

X

Yv

Submodularity 3/ 6



The function value is non-decreasing when elements are added
f(v|X) ≜ f(X ∪ {v})− f(X)

marginal gain of adding v ∈ E to X ⊆ E

f : 2E → R is monotone
△⇔ For all X ⊆ E and v ∈ E, we have f(v|X) ≥ 0

e.g.) X = { , } and v = f({ , , })− f({ , }) ≥ 0
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For various equilibrium concepts, we provide PoA and PoS bounds
BNE, SF/ANFCE, ANF/SFCCE Com.Eq. BS, ANF/SFCBS

PoA (v, i) 1/2 1/2 ∈
[
1−1/e

2 , 0.441
]

PoA (v, c) Θ
(

1√
n

)
Θ
(

1√
n

)
Θ
(

1√
n

)
PoS (b, i) 1− 1/e ≤ 4/5 1

PoS (b, c) Θ
(

1√
n

)
Ω
(

1√
n

)
1

“v”=valid utility games, “b”=basic utility games,
“i”=type prior distribution ρ is independent, “c”=ρ can be correlated

Bayes–Nashequilibria SFCE

Communicationequilibria
ANFCE

Bayesiansolutions
ANFCCE SFCCE
ANFCBS SFCBS
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N = {1, 2, . . . , n} players N = { , }

Θi finite set of types for player i ∈ N Θ = Θ = { , }

Aθi
i finite set of actions for player i ∈ N with type θi ∈ Θi A = { , }

Θ = ∏
i∈N Θi type profiles

ρ ∈ ∆(Θ) prior distribution over type profiles ρ( , ) = 1/4

A distribution π ∈ ∏θ∈Θ ∆(Aθ) is a communication equilibrium if
for any i ∈ N , θi, θ′i ∈ Θi, and ϕ : Aθ′

i
i → Aθi

i , it holds that
E

θ−i∼ρ|θi

[
E

a∼π(θ)
[vi(a)]

]
≥ E

θ−i∼ρ|θi

[
E

a∼π(θ′
i
,θ−i)

[vi(ϕ(ai), a−i)]
]
.

Communication equilibria 6/ 6


	Our setting: Bayesian valid utility games
	Our technique: Strategy-representability gap
	Other results
	Appendix

