Bayes correlated equilibria and no-regret dynamics

Kaito Fujii (National Institute of Informatics)

16 Feb. 2024 @ UTokyo

Goals of algorithmic game theory 2/39

Goal 1 Computing equilibria efficiently

- \bullet Is it possible to compute equilibria of a given game in reasonable time?
- \bullet If it is difficult, is it possible to find an evidence for difficulty?

Goal 2 Guaranteeing quality of equilibria (price of anarchy)

In the worst equilibria, how much does social welfare deteriorate?

This study aims to achieve these two goals for Bayesian games

There are various other goals (e.g., computing auctions, cooperative games)

Table of Contents 1999 12/ 39 3/39

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

A game is zero-sum *△ ⇔* the total payoff is always zero

Example:

rock paper scissors

Nash equilibria: both players choose every action with prob. 1*/*3 (unique)

and at an intersection decide whether to go or to stop

Nash equilibria:

- **1.** (Go*,* Stop)
- **2.** (Stop*,* Go)
- **3.** Both choose Go and Stop with prob. 1*/*2

Problem Compute any Nash equilibrium given a payoff table

Is there an algorithm that runs in time polynomial in #actions?

Two-player zero-sum games: Yes

Linear-programming-based algorithm [von Neumann 1928, Khachiyan'79]

Two-player non-zero-sum games: No (probably)

This problem is PPAD-complete [Chen–Deng–Teng'09]

Computer scientists "believe" that solving it in poly-time is impossible

Question Is there any equilibrium concept easy to compute?

Players' actions can be correlated via a traffic signal

Correlated equilibria:

infinitely many including Nash eq.

e.g.) (Go*,* Stop) with prob. 1*/*2 e.g.) (Stop*,* Go) with prob. 1*/*2

Correlated equilibria Biography Biogr

 $N = \{1, 2, \ldots, n\}$ players $N = \{$, $\}$ A_i finite set of actions for player $i \in N$ *A_i* = {Go, Stop} $A = A_1 \times A_2 \times \cdots \times A_n$ set of action profiles $v_i \colon A \to [0,1]$ utility function for player $i \in N$ and $u_{\bigoplus}(\mathsf{Go},\mathsf{Stop}) = 4$

Definition

A distribution over action profiles $\pi \in \Delta(A)$ is a correlated equilibrium $\not\iff$ For any player $i \in N$ and deviation $\phi \colon A_i \to A_i$, $\mathbb{E}_{a \sim \pi} \left[v_i(\phi(a_i), a_{-i}) \right] \leq \mathbb{E}_{a \sim \pi} \left[v_i(a) \right].$

If π is a product distribution, this definition coincides with Nash equilibria

Correlated equilibria Correlated equilibria

Definition

A distribution over action profiles $\pi \in \Delta(A)$ is a correlated equilibrium

 $\not\iff$ For any player $i \in N$ and deviation $\phi \colon A_i \to A_i$,

$$
\mathop{\mathbb{E}}_{a\sim\pi}\left[v_i(\phi(a_i),a_{-i})\right]\leq \mathop{\mathbb{E}}_{a\sim\pi}\left[v_i(a)\right].
$$

We can define a CE $\pi \in \Delta(A)$ as follows:

 $\pi(Go, Stop) = 1/2$, $\pi(Stop, Go) = 1/2$

Each player cannot increase the payoff by any *ϕ* e.g., ϕ (Go) = Stop, ϕ (Stop) = Stop decreases it

The set of CEs is expressed by linear constraints with *|A|* **variables**

$$
\mathsf{CE} = \left\{ \pi \in [0,1]^A \, \middle| \, \begin{array}{l} \sum_{a \in A: \\ a_i = a'_i \\ \sum_{a \in A} \pi(a) = 1 \end{array} \pi(a)[v_i(a) - v_i(a''_i, a_{-i})] \le 0 \, (\forall i \in N, \forall a'_i, a''_i \in A_i) \\ \sum_{a \in A} \pi(a) = 1 \end{array} \right\}
$$

If the number of players is a constant, the size of this LP is polynomial

→ The problem of finding (also optimizing) a CE is tractable [Khachiyan'79]

Question How about cases where the number of players is large?

Computing correlated equilibria 11/39

Theorem [Foster–Vohra'97, Hart–Mas-Collel'00, Blum–Mansour'07]

There exists a poly-time algo. for computing a CE of *n*-player games

 \cdot Since v_i requires space exponential in n_i , we assume oracle access to v_i

 ϵ -approximate CE is obtained in time polynomial in n , $\max_{i \in N} |A_i|$, and $1/\epsilon$

cf. Computing Nash equilibria is PPAD-complete even for two-player games

The problem of computing **any** CE is easier than computing **any** NE

No-regret dynamics 12/ 39

for $t = 1, 2, ..., T$ **do**

Each player $i \in N$ decides a (mixed) strategy $\pi^t_i \in \Delta(A_i)$ All players' strategies $(\pi^t_i)_{i \in N}$ are revealed to each other Each player i obtains reward $\mathop{\mathbb{E}}[v_i(a^t)]$, where $a_i^t \thicksim \pi_i^t$ independently (∀ i)

Swap regret [Blum–Mansour'07] 13/ 39

$$
\text{SwapRegret}_{i}^{T} \stackrel{\triangle}{=} \max_{\phi: A_{i} \to A_{i}} \sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(\phi(a_{i}^{t}), a_{-i}^{t})\right]}_{\text{reward in round } t \text{ if}} - \sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(a^{t})\right]}_{\text{reward in round } t \text{ the actions are replaced}} + \underbrace{\mathbb{E}\left[v_{i}^{t}(a^{t})\right]}_{\text{according to }\phi}
$$

Theorem [Blum–Mansour'07]

If swap regret of every player grows sublinearly in *T*,

the empirical distribution converges to a correlated equilibrium The uniform mixture of action profiles of *T* rounds

Another variant called *internal regret* does not work for Bayes correlated equilibria

Table of Contents 14/39

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

Price of anarchy (PoA)

$$
15/39
$$

 $v_{\text{SW}}: A \rightarrow \mathbb{R}_{\geq 0}$ social welfare usually $v_{\text{SW}}(a) \stackrel{\triangle}{=} \sum v_i(a)$ *i∈N*

^{*} PoA depends on the equilibrium concept (PoA for NE, etc.)

In some game,

the PoA can be close to 0

the worst equilibrium: 2 at (D*,* D)

the optimal: 20 at (C*,* C)

Smoothness framework (1/2) [Roughgarden'15] 16/ 39

a

Question For what class of games is the PoA lower-bounded? Definition [Roughgarden'15] An *n*-player game is (*λ, µ*)-smooth \Leftrightarrow $\forall a, a^* \in A: \sum^n v_i(a_i^*, a_{-i}) \geq \lambda \quad v_{\text{SW}}(a^*)$ *i*=1 Player *i* switches from a_i to a_i^* social welfare achieved by *a ∗ −μ v*_{SW}(*a*) social welfare achieved by *a a ∗* social optimal $(a_1^*, a_{-1}) \ (a_2^*, a_{-1}) \ \cdots \cdots \ (a_n^*, a_{-n})$ The deviations significantly increase social welfare towards the optimal

Smooth games are a broad class of games with bounded PoA

Examples of smooth games

Congestion games, various auctions, competitive facility location,

effort market games, competitive information spread, ...

Table of Contents 18/39

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

and independently decide where to go prefers sea C , while \mathbb{C} prefers mountain \mathbb{A}

Players' types are generated from a common prior distribution

Each of **p** and **p** prefers **C** and **A** with prob. 1/2 for each

(Each player knows the prior distribution only, not the others' types)

 $N = \{1, 2, \ldots, n\}$ players $N = \{0, 1, 2, \ldots, n\}$ *A*_i finite set of actions for player $i \in N$ $A_1 = A_2 = \{ \mathbf{c}, \mathbf{a} \}$ Θ_i finite set of types for player $i \in N$ $\Theta_1 = \Theta_2 = \{$ type: $\mathbb{C},$ type: \mathbb{Z} } $A = \prod_{i \in N} A_i$ action profiles, $\Theta = \prod_{i \in N} \Theta_i$ type profiles $\rho \in \Delta(\Theta)$ prior distribution over type profiles $\rho(\text{type: } \mathbb{C}, \text{type: } \mathbb{C}) = 1/4$ *vi* : Θ *× A →* [0*,* 1] utility function for player *i ∈ N v*1(type: *,* type: ; *,*) = 1

Computational studies on Bayesian games 22/ 39

Equilibrium computation:

Computing Bayes Nash equilibria (BNE) is PPAD-complete Existing algorithms can compute weak equilibria (Bayes coarse CE) [Hartline–Syrgkanis–Tardos'15]

• Price of anarchy

Smoothness framework provides PoA bounds only for BNE

[Roughgarden'15b, Syrgkanis–Tardos'13]

Q Is there any equilibrium concept that has both merits?

Various Bayes correlated equilibria [Forges'93] 23/ 39

Various Bayes correlated equilibria [Forges'93] 23/ 39

Communication equilibria [Myerson'82, Forges'86] 24/ 39

Definition

A distribution $\pi \in \Delta(A)^{\Theta}$ is a communication equilibrium \Leftrightarrow For any player $i\in N$, $\psi\colon \Theta_i\to \Theta_i$, and $\phi\colon \Theta_i\times A_i\to A_i$, E *θ∼ρ* $\sqrt{ }$ E *a∼π*(*ψ*(*θi*)*,θ−i*) $\left[v_i(\theta;\phi(\theta_i,a_i),a_{-i})\right] \leq \mathop{\mathbb{E}}_{\theta \sim \rho}$ $\sqrt{ }$ E *a∼π*(*θ*) $[v_i(\theta; a)]$.

Two incentive constraints

1 No incentive to **tell an untrue type** (represented by *ψ*)

2 No incentive to **disobey the recommendation** (represented by *ϕ*)

Agent-normal-form correlated equilibria 26/ 39

ANFCE is defined as CE of the agent normal form

Agent normal form of Bayesian games

The same player with different types are regarded as different players

Only (hypothetical) players with realized types play the game

In our example, randomly selected two out of $(\hat{\mathbf{z}}, \hat{\mathbf{c}}), (\hat{\mathbf{z}}, \hat{\mathbf{a}}), (\hat{\bullet}, \hat{\mathbf{c}}), (\hat{\bullet}, \hat{\mathbf{a}})$ play the game

Difference from communication equilibria:

- No incentive constraint for truthful type telling
- The distribution must satisfy some technical condition

called **strategy representability**

Our contribution 1: dynamics 27/ 39

We propose no-regret dynamics converging to ANFCE *∩* **Com.Eq.**

In repeated play, players aim to minimize **untruthful swap regret** defined later

Theorem (informal)

Dynamics with *o*(*T*) untruthful swap regret converge to ANFCE *∩* Com.Eq. and can be simulated by the proposed algorithm in polynomial time

PoA bounds for ANFCE *∩* **Com.Eq. via smoothness arguments**

Previous results PoA bounds for **BNE** via smoothness

↓ extend [Roughgarden'15b, Syrgkanis–Tardos'13]

Our results PoA bounds for **ANFCE** *∩* **Com.Eq.** via smoothness

PoA decreases as equilibria get broader (the worst equilibrium considered)

Theorem (informal)

PoA for ANFCE \cap Com.Eq. is at least $\lambda/(1 + \mu)$

if a game for each fixed $\theta \in \Theta$ is (λ, μ) -smooth

Applications:

$$
v_{\rm SW} = \sum_i v_i
$$
 case,

various auctions, ...

Table of Contents 29/39

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

No-regret dynamics in Bayesian games 30/ 39

For $t = 1, 2, ..., T$ **:**

Each player $i \in N$ decides a (mixed) strategy $\pi_i^t \in \Delta(A_i)^{\Theta_i}$ All players' strategies $(\pi_i^t)_{i \in N}$ are revealed to each other Each player *i* obtains reward $\mathbb{E}[v_i(\theta; a^t)],$

where $\theta \sim \rho$ and then $a_i^t \sim \pi_i^t(\theta_i)$ independently for each i

We consider the expected value w.r.t. *θ* and *a* in each round

Untruthful swap regret 31/39

Untruthful swap regret for player *i ∈ N*

$$
R_{\text{US},i}^T = \max_{\substack{\psi : \Theta_i \to \Theta_i \\ \phi : \Theta_i \times A_i \to A_i}} \sum_{t=1}^T \max_{\theta_i \sim \rho_i} \left[\mathop{\mathbb{E}}_{a_i \sim \pi_i^t(\psi(\theta_i))} \left[u_i^t(\theta_i, \phi(\theta_i, a_i)) \right] \right] - \sum_{t=1}^T \mathop{\mathbb{E}}_{\theta_i \sim \rho_i} \left[\mathop{\mathbb{E}}_{a_i \sim \pi_i^t(\theta_i)} \left[u_i^t(\theta_i, a_i) \right] \right],
$$
\nwhere $u_i^t(\theta_i, a_i) \triangleq \mathop{\mathbb{E}}_{\theta_{-i} \sim \rho_{-i}|\theta_i} \left[\mathop{\mathbb{E}}_{a_{-i} \sim \pi_{-i}^t(\theta_{-i})} \left[v_i(\theta; a) \right] \right]$ is the reward vector at round t
\n(ρ_i the marginal distribution, $\rho_{-i}|\theta_i$ the conditional distribution)

Two incentive constraints for communication equilibria

- 1. No incentive to **tell an untrue type** (represented by *ψ*)
- 2. No incentive to **disobey the recommendation** (represented by *ϕ*)

Suppose each player minimizes USR against adversarial players

Upper bound Φ -regret minimization framework + decomposition

Theorem

The proposed algo. achieves
$$
R_{US,i} = O\left(\sqrt{T \max\{|A_i| \log |A_i|, \log |\Theta_i|\}}\right)
$$

Lower bound	Analyze a hard instance with optimal stopping theory
Theory	
Any algorithm satisfies $R_{US,i} = \Omega\left(\sqrt{T \max\{ A_i \log A_i , \log \Theta_i \}}\right)$	

External regret minimization algo. 33/ 39

 $u^t \in [0,1]^A$ reward vector in round $t \in [T]$

 $\pi^t \in \Delta(A)$ mixed strategy in round $t \in [T] \quad **^{\mathsf{w}}**$ Subscript i is omitted from now on

$$
\text{ExternalRegret}^T \stackrel{\triangle}{=} \max_{a^* \in A} \sum_{t=1}^T u^t(a^*) - \sum_{t=1}^T \mathop{\mathbb{E}}_{a^t \sim \pi^t} \left[u^t(a^t) \right]
$$

Multiplicative Weights Update method: Initialize $\pi^1(a) = 1/|A|$ ($\forall a \in A$),

For each $t \in [T]$: Update $\pi^{t+1}(a) \propto \pi^t(a) \exp(\eta u^t(a))$ ($\forall a \in A$)

Theorem [Cesa-Bianchi–Lugosi'07]

If
$$
\eta = \sqrt{\frac{\log |A|}{T}}
$$
, MWU achieves ExternalRegret^T = $O\left(\sqrt{T \log |A|}\right)$

Swap regret minimization algo. [Blum–Mansour'07] 34/ 39

$$
\text{SwapRegret}^T \stackrel{\triangle}{=} \max_{\phi: A_i \to A_i} \sum_{t=1}^T \mathop{\mathbb{E}}_{a^t \sim \pi^t} \left[u^t(\phi(a^t)) \right] - \sum_{t=1}^T \mathop{\mathbb{E}}_{a^t \sim \pi^t} \left[u^t(a^t) \right]
$$
\n
$$
\text{SwapRegret}^T \stackrel{\triangle}{=} \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q \pi^t, u^t \rangle - \sum_{t=1}^T \langle \pi^t, u^t \rangle,
$$
\n
$$
\text{where } \mathcal{Q} = \left\{ Q \in [0, 1]^{A \times A} \mid \mathbf{1}Q = \mathbf{1} \right\}
$$
\n
$$
\text{SwapRegret}^T \stackrel{\triangle}{=} \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q, \pi^t \otimes u^t \rangle - \sum_{t=1}^T \langle Q^t, \pi^t \otimes u^t \rangle \text{ if } Q^t \pi^t = \pi^t \text{ for all } t \in [T]
$$

Swap regret minimization algo. [Blum–Mansour'07] 35/ 39

$$
\text{SwapRegret}^T \stackrel{\triangle}{=} \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q, \pi^t \otimes u^t \rangle - \sum_{t=1}^T \langle Q^t, \pi^t \otimes u^t \rangle \text{ if } Q^t \pi^t = \pi^t \text{ for all } t \in [T]
$$

- 1: Initialize subroutines (*Ea*)*^a∈^A* for external regret minimization with actions *A*
- 2: **for** $t = 1, 2, ..., T$ **do**
- 3: Let $q_a^t \in \Delta(A)$ be the output of subroutine \mathcal{E}_a for each $a \in A$
- 4: Let Q^t be an $|A| \times |A|$ matrix with each column q^t_a
- 5: Find $\pi^t \in \Delta(A)$ such that $\pi^t = Q^t \pi^t$
- 6: Observe u^t and feed $\pi^t(a)u^t$ to subroutine \mathcal{E}_a

Untruthful swap regret minimization algo. 36/39

$$
R_{\text{US},i}^T = \max_{\phi: \Theta \to \Theta} \sum_{t=1}^T \mathbb{E}_{\theta \sim \rho} \left[\mathbb{E}_{a \sim \pi^t(\psi(\theta))} \left[u^t(\theta, \phi(\theta, a)) \right] \right] - \sum_{t=1}^T \mathbb{E}_{\theta \sim \rho} \left[\mathbb{E}_{a \sim \pi^t(\theta)} \left[u^t(\theta, a) \right] \right]
$$

SwapRegret^T $\stackrel{\triangle}{=} \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q \pi^t, u^t \rangle - \sum_{t=1}^T \langle \pi^t, u^t \rangle$, where

$$
\mathcal{Q} = \left\{ Q \in [0, 1]^{(\Theta \times A) \times (\Theta \times A)} \; \middle| \; \begin{array}{l} \text{there exists some } W \in [0, 1]^{\Theta \times \Theta} \text{ such that} \\ \sum_{\theta' \in \Theta} W(\theta, \theta') = 1 \; (\forall \theta \in \Theta) \text{ and} \\ \sum_{a \in A} Q((\theta, a), (\theta', a')) = W(\theta, \theta') \; (\forall \theta, \theta' \in \Theta, a' \in A) \end{array} \right\}
$$

π ^t and *u ^t* are flattened to be a *|*Θ*| × |A|* dimensional vector

Untruthful swap regret minimization algo. 37/ 39

Full description of the algorithm 38/ 39

The set of types Θ_i and the set of actions A_i are specified in advance. The reward vector $u_i^t \in [0,1]^{\Theta_i \times A_i}$ is given at the end of each round $t \in [T]$. Initialize subroutines as follows:

- ϵ let ${\mathcal{E}_\theta}_i$ be a multiplicative weights algorithm with decision space Θ_i for each $\theta_i \in \Theta_i$
- $\;$ let ${\cal E}_{\theta_i, \theta'_i, a'_i}$ be AdaHedge with decision space A_i for each $\theta_i, \theta'_i \in \Theta_i$ and $a'_i \in A_i$ *i i*

for each round $t = 1, \ldots, T$ **do**

Let
$$
w_{\theta_i}^t \in \Delta(\Theta_i)
$$
 be the output of \mathcal{E}_{θ_i} in round t for each $\theta_i \in \Theta_i$.\n\nLet $y_{\theta_i, \theta'_i, a'_i}^t \in \Delta(A_i)$ be the output of $\mathcal{E}_{\theta_i, \theta'_i, a'_i}$ in round t for each $\theta_i, \theta'_i \in \Theta_i$ and $a'_i \in A_i$.\n\nDefine $Q^t \in [0, 1]^{(\Theta_i \times A_i) \times (\Theta_i \times A_i)}$ by $Q^t((\theta_i, a_i), (\theta'_i, a'_i)) = w_{\theta_i}^t(\theta'_i) y_{\theta_i, \theta'_i, a'_i}^t(a_i)$ for each $\theta_i, \theta'_i \in \Theta_i$ and $a_i, a'_i \in A_i$.\n\nCompute an eigenvector $x^t \in \mathbb{R}^{\Theta_i \times A_i}$ of Q^t such that $Q^t x^t = x^t$ and $(x^t)^\top \mathbf{1} = |\Theta_i|$.\n\nDecide the output $\pi_i^t \in \Delta(A_i)^{\Theta_i}$ by $\pi_i^t(\theta_i; a_i) = x^t(\theta_i, a_i)$ for each $\theta_i \in \Theta_i$ and $a_i \in A_i$. Observe reward vector $u_i^t \in [0, 1]^{\Theta_i \times A_i}$ and feed reward vectors to subroutines as follows:\n\n
$$
\mathbf{f} = \sum_{i=1}^t w_{\theta_i, \theta'_i, a'_i}^t(a_i) \pi_i^t(\theta'_i; a'_i) \rho_i(\theta_i) u_i^t(\theta_i, a_i)
$$
 as the reward for decision $\theta'_i \in \Theta_i$.

$$
a_i, a_i' \in A_i
$$

 $\sum_{i}^{n} \sum_{i}^{n} f(x_i)$
to subroutine \mathcal{E}_{θ_i} for each $\theta_i \in \Theta_i$

- feed $\pi_i^t(\theta_i',a_i')\rho_i(\theta_i)u_i^t(\theta_i,a_i)$ as the reward for decision $a_i \in A_i$ to subroutine $\mathcal{E}_{\theta_i,\theta_i',a_i'}$ $\theta_i, \theta'_i \in \Theta_i$ and $a'_i \in A_i$

ANFCE *∩* **Com.Eq. in Bayesian games satisfies the following goals**

Goal 1 Efficient computation

- No-regret dynamics converging to ANFCE *∩* Com.Eq.
- Algorithm for simulating the dynamics with the optimal convergence rate

Goal 2 PoA bounds

Extension of the smoothness framework from BNE to ANFCE *∩* Com.Eq.

Reference 1/1

- Avrim Blum and Yishay Mansour. 2007. From External to Internal Regret. *Journal of Machine Learning Research* 8, 1307–1324.
- Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of computing two- player Nash equilibria. *Journal of the ACM* 56, 3, 14:1–14:57.
- Cesa-Bianch and Lugosi. 2007. *Prediction, Learning, and Games*, Cambridge University Press.
- Françoise Forges. 1986. An approach to communication equilibria. *Econometrica*, 1375-1385.
- Franc¸ oise Forges. 1993. Five legitimate definitions of correlated equilibrium in games with incomplete information. *Theory and Decision* 35, 277–310.
- Dean P Foster and Rakesh V Vohra. 1997. Calibrated learning and correlated equilibrium. *Games and Economic Behavior* 21(1-2), 40–55.
- John C. Harsanyi. 1967. Games with Incomplete Information Played by "Bayesian" Players, I–III. *Management Science* 14(3):159–182, 14(5):320–334, 14(7):486–502.
- Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibrium. *Econometrica* 68(5), 1127–1150.
- Jason D. Hartline, Vasilis Syrgkanis, and Éva Tardos. 2015. No-Regret Learning in Bayesian Games. In *NIPS 2015*, 3061-3069.
- Tim Roughgarden. 2015a. Intrinsic Robustness of the Price of Anarchy. *Journal of the ACM* 62(5), 32:1–32:42.
- Tim Roughgarden. 2015b. The Price of Anarchy in Games of Incomplete Information. *ACM Transactions on Economics and Computation* 3(1), 6:1–6:20.
- Vasilis Syrgkanis and Éva Tardos. 2013. Composable and efficient mechanisms. In *STOC 2013*. 211-220.
- Illustrations: "Twemoji" by Twitter, Inc and other contributors is licensed under CC BY 4.0