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Goal 1Goal 1 Computing equilibria efficiently
Is it possible to compute equilibria of a given game in reasonable time?
If it is difficult, is it possible to find an evidence for difficulty?

Goal 2Goal 2 Guaranteeing quality of equilibria (price of anarchy)
In the worst equilibria, how much does social welfare deteriorate?

This study aims to achieve these two goals for Bayesian games
There are various other goals (e.g., computing auctions, cooperative games)
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Background 1: Equilibrium computation
Background 2: Price of anarchy
Our results on Bayesian games
Details of the proposed dynamics
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A game is zero-sum △⇔ the total payoff is always zero

　　
　　
　　

　　 　　 　　

　　

　　

　　
　　
　　

　　 　　 　　
0 -1 1
1 0 -1
-1 1 0

0 1 -1
-1 0 1
1 -1 0

Example:
rock paper scissors
Nash equilibria:
both players
choose every action
with prob. 1/3 (unique)
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　　 and　　 at an intersection decide whether to go or to stop

Go
Stop

Go Stop

　　

　　

0 3
4 1

0 4
3 1

　　　　 Nash equilibria:
1. (Go, Stop)
2. (Stop,Go)
3. Both choose Go and

Stop with prob. 1/2

Two-player non-zero-sum games 5/ 39



ProblemProblem Compute any Nash equilibrium given a payoff table
Is there an algorithm that runs in time polynomial in #actions?

Two-player zero-sum games: Yes
Linear-programming-based algorithm [von Neumann 1928, Khachiyan’79]
Two-player non-zero-sum games: No (probably)
This problem is PPAD-complete [Chen–Deng–Teng’09]

Computer scientists “believe” that solving it in poly-time is impossible
QuestionQuestion Is there any equilibrium concept easy to compute?
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Players’ actions can be correlated via a traffic signal

Go
Stop

Go Stop

　　

　　

0 3
4 1

0 4
3 1

　　　　
　　　　 Correlated equilibria:

infinitely many including Nash eq.
e.g.) (Go, Stop) with prob. 1/2
e.g.) (Stop,Go) with prob. 1/2
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N = {1, 2, . . . , n} players N = { , }

Ai finite set of actions for player i ∈ N Ai = {Go, Stop}
A = A1 × A2 × · · · × An set of action profiles
vi : A→ [0, 1] utility function for player i ∈ N u (Go, Stop) = 4

Definition
A distribution over action profiles π ∈ ∆(A) is a correlated equilibrium
△⇔ For any player i ∈ N and deviation ϕ : Ai → Ai,

E
a∼π

[vi(ϕ(ai), a−i)] ≤ E
a∼π

[vi(a)].
If π is a product distribution, this definition coincides with Nash equilibria
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Definition
A distribution over action profiles π ∈ ∆(A) is a correlated equilibrium
△⇔ For any player i ∈ N and deviation ϕ : Ai → Ai,

E
a∼π

[vi(ϕ(ai), a−i)] ≤ E
a∼π

[vi(a)].

Go
Stop

Go Stop
0 3
4 1

0 4
3 1

We can define a CE π ∈ ∆(A) as follows:
π(Go, Stop) = 1/2, π(Stop,Go) = 1/2

Each player cannot increase the payoff by any ϕ
e.g., ϕ(Go) = Stop, ϕ(Stop) = Stop decreases it
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The set of CEs is expressed by linear constraints with |A| variables

CE =


π ∈ [0, 1]A

∣∣∣∣∣∣∣∣∣∣∣

∑
a∈A :
ai=a′i

π(a)[vi(a)− vi(a′′i , a−i)] ≤ 0 (∀i ∈ N, ∀a′i, a′′i ∈ Ai)

∑
a∈A

π(a) = 1


If the number of players is a constant, the size of this LP is polynomial
→ The problem of finding (also optimizing) a CE is tractable [Khachiyan’79]
QuestionQuestion How about cases where the number of players is large?
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Theorem [Foster–Vohra’97, Hart–Mas-Collel’00, Blum–Mansour’07]
There exists a poly-time algo. for computing a CE of n-player games

Since vi requires space exponential in n, we assume oracle access to vi
An ϵ-approximate CE is obtained in time polynomial in n, maxi∈N |Ai|, and 1/ϵ

cf. Computing Nash equilibria is PPAD-complete even for two-player games

CE
NE

The problem of computing any CE is
easier than computing any NE
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AlgorithmAlgorithm Simulate no-regret dynamics converging to a CE
Players learn their strategy in repeated play of the same game

　　　　　　

　　　　 　　　　 　　　　

for t = 1, 2, . . . , T do
Each player i ∈ N decides a (mixed) strategy πti ∈ ∆(Ai)

All players’ strategies (πti)i∈N are revealed to each other
Each player i obtains reward E[vi(at)], where ati ∼ πti independently (∀i)

No-regret dynamics 12/ 39



SwapRegretTi
△= max

ϕ : Ai→Ai

T∑
t=1

E
[
vti(ϕ(ati), at−i)

]
reward in round t ifthe actions are replacedaccording to ϕ

−
T∑
t=1

E [vti(at)]reward in round t

Theorem [Blum–Mansour’07]
If swap regret of every player grows sublinearly in T ,
the empirical distribution converges to a correlated equilibrium
The uniform mixture of action profiles of T rounds

Another variant called internal regret does not work for Bayes correlated equilibria

Swap regret [Blum–Mansour’07] 13/ 39
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PoA △=
infπ : equilibrium Ea∼π [vSW(a)]

maxa∈A vSW(a)

vSW : A→ R≥0 social welfare
usually vSW(a) △=

∑
i∈N

vi(a)

by the worst equilibriumthe social welfare achieved

the optimal social welfare
PoA depends on the equilibrium concept (PoA for NE, etc.)

C

D

C D
10 15
0 1

10 0
15 1

In some game,
the PoA can be close to 0

the worst equilibrium: 2 at (D,D)
the optimal: 20 at (C,C)

Price of anarchy (PoA) 15/ 39



QuestionQuestion For what class of games is the PoA lower-bounded?
Definition [Roughgarden’15]
An n-player game is (λ, µ)-smooth
△⇔ ∀a, a∗ ∈ A: n∑

i=1
vi(a∗i , a−i)︸ ︷︷ ︸Player i switches

from ai to a∗i

≥ λ vSW(a∗)︸ ︷︷ ︸social welfare
achieved by a∗

−µ vSW(a)︸ ︷︷ ︸social welfare
achieved by a

a

a∗ social optimal

(a∗1, a−1) (a∗2, a−2) (a∗n, a−n)
The deviations significantly increase
social welfare towards the optimal

Smoothness framework (1/2) [Roughgarden’15] 16/ 39



Smooth games are a broad class of games with bounded PoA
Theorem [Roughgarden’15]
PoA for correlated equilibria is at least λ

1 + µ
in (λ, µ)-smooth games

Roughgarden further proved this bound for coarse correlated equilibria

Examples of smooth gamesExamples of smooth games
Congestion games, various auctions, competitive facility location,
effort market games, competitive information spread, ...

Smoothness framework (2/2) [Roughgarden’15] 17/ 39
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　　 and　　 independently decide where to go
　　 prefers sea　　, while　　 prefers mountain　　

　　

　　

　　 　　

　　

　　

3 1
0 44 1

0 3
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Players’ types are generated from a common prior distribution
Each of　　 and　　 prefers　　 and　　 with prob. 1/2 for each

(Each player knows the prior distribution only, not the others’ types)

　　

　　

　　 　　

　　
type:　　

　　 type:　　w.p. 1/4

4 0
1 34 1

0 3
　　

　　

　　 　　

　　
type:　　

　　 type:　　w.p. 1/4

3 1
0 44 1

0 3
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N = {1, 2, . . . , n} players N = { , }

Ai finite set of actions for player i ∈ N A1 = A2 = { , }

Θi finite set of types for player i ∈ N Θ1 = Θ2 = {type: , type: }

A = ∏
i∈N Ai action profiles, Θ = ∏

i∈N Θi type profiles
ρ ∈ ∆(Θ) prior distribution over type profiles ρ(type: , type: ) = 1/4

vi : Θ× A→ [0, 1] utility function for player i ∈ N v1(type: , type: ; , ) = 1

Notations for Bayesian games 21/ 39



Equilibrium computation:
Computing Bayes Nash equilibria (BNE) is PPAD-complete
Existing algorithms can compute weak equilibria (Bayes coarse CE)

[Hartline–Syrgkanis–Tardos’15]
Price of anarchy
Smoothness framework provides PoA bounds only for BNE

[Roughgarden’15b, Syrgkanis–Tardos’13]
QQ Is there any equilibrium concept that has both merits?

Computational studies on Bayesian games 22/ 39



BayesNash equilibria

Strategic-form CE Communi-cationequilibria
Agent-normal-formCE

Bayesian solution

Various Bayes correlated equilibria [Forges’93] 23/ 39



BayesNash equilibria

Strategic-form CE Communi-cationequilibria
Agent-normal-formCE

Bayesian solution

ANFCE ∩ Com.Eq.

Various Bayes correlated equilibria [Forges’93] 23/ 39



Equilibria realized by a credible mediator　　
1 Each player tells the mediator　　 their types

　　 　　　　
I prefer　　I prefer　　

2 The mediator　　 sends a recommendation to each
　　 　　　　

Go to　　Go to　　
Same type→ Recommend their preferred place
Different types→ Recommend　　 or　　 each with prob. 1/2

　　

　　

　　 　　

　　

type: 　　

　　 type: 　　
w.p. 1/4

4 0
1 3

4 1
0 3

　　

　　

　　 　　

　　

type: 　　

　　 type: 　　
w.p. 1/4

3 1
0 4

4 1
0 3

Communication equilibria [Myerson’82, Forges’86] 24/ 39



Definition
A distribution π ∈ ∆(A)Θ is a communication equilibrium
△⇔ For any player i ∈ N , ψ : Θi → Θi, and ϕ : Θi × Ai → Ai,

E
θ∼ρ

[
E

a∼π(ψ(θi),θ−i)
[vi(θ;ϕ(θi, ai), a−i)]

]
≤ E

θ∼ρ

[
E

a∼π(θ)
[vi(θ; a)]

]
.

Two incentive constraintsTwo incentive constraints
1 No incentive to tell an untrue type (represented by ψ)
2 No incentive to disobey the recommendation (represented by ϕ)

Communication equilibria [Myerson’82, Forges’86] 25/ 39



ANFCE is defined as CE of the agent normal form
Agent normal form of Bayesian games
The same player with different types are regarded as different players
Only (hypothetical) players with realized types play the game
In our example, randomly selected two out of ( , ), ( , ), ( , ), ( , ) play the game
Difference from communication equilibria:
- No incentive constraint for truthful type telling
- The distribution must satisfy some technical condition

called strategy representability

Agent-normal-form correlated equilibria 26/ 39



We propose no-regret dynamics converging to ANFCE ∩ Com.Eq.
Day 1
　　
　　

　　
　　

Day 2
　　
　　

　　
　　

Day 3
　　
　　

　　
　　

Day 4
　　
　　

　　
　　 · · ·

　　

　　

　　

　　

　　

　　

　　

　　

In repeated play, players aim to minimize untruthful swap regret
defined later

Theorem (informal)
Dynamicswith o(T )untruthful swap regret converge to ANFCE∩Com.Eq.
and can be simulated by the proposed algorithm in polynomial time

Our contribution 1: dynamics 27/ 39



PoA bounds for ANFCE ∩ Com.Eq. via smoothness arguments
Previous resultsPrevious results PoA bounds for BNE via smoothness

[Roughgarden’15b, Syrgkanis–Tardos’13]↓ extend
Our resultsOur results PoA bounds for ANFCE ∩ Com.Eq. via smoothness
PoA decreases as equilibria get broader (the worst equilibrium considered)

Theorem (informal)
PoA for ANFCE ∩ Com.Eq. is at least λ/(1 + µ)

if a game for each fixed θ ∈ Θ is (λ, µ)-smooth
Applications:
vSW =

∑
i vi case,

various auctions, ...

Our contribution 2: PoA bounds 28/ 39
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For t = 1, 2, . . . , T :
Each player i ∈ N decides a (mixed) strategy πti ∈ ∆(Ai)Θi

All players’ strategies (πti)i∈N are revealed to each other
Each player i obtains reward E[vi(θ; at)],

where θ ∼ ρ and then ati ∼ πti(θi) independently for each i
Day 1
　　
　　

　　
　　

Day 2
　　
　　

　　
　　

Day 3
　　
　　

　　
　　

Day 4
　　
　　

　　
　　 · · ·

　　

　　

　　

　　

　　

　　

　　

　　

We consider the expected value w.r.t. θ and a in each round

No-regret dynamics in Bayesian games 30/ 39



Untruthful swap regret for player i ∈ N

RT
US,i = max

ψ : Θi→Θi
ϕ : Θi×Ai→Ai

T∑
t=1

E
θi∼ρi

[
E

ai∼πt
i
(ψ(θi))

[
uti(θi, ϕ(θi, ai))

]]

−
T∑
t=1

E
θi∼ρi

[
E

ai∼πt
i
(θi)

[
uti(θi, ai)

]]
,

where uti(θi, ai) △= E
θ−i∼ρ−i|θi

[
E

a−i∼πt
−i

(θ−i)
[vi(θ; a)]

]
is the reward vector at round t

(ρi the marginal distribution, ρ−i|θi the conditional distribution)
Two incentive constraints for communication equilibria
1. No incentive to tell an untrue type (represented by ψ)
2. No incentive to disobey the recommendation (represented by ϕ)

Untruthful swap regret 31/ 39



Suppose each player minimizes USR against adversarial players
Upper boundUpper bound Φ-regret minimization framework + decomposition
Theorem
The proposed algo. achieves RUS,i = O

(√
T max{|Ai| log |Ai|, log |Θi|}

)

Lower boundLower bound Analyze a hard instance with optimal stopping theory
Theorem
Any algorithm satisfies RUS,i = Ω

(√
T max{|Ai| log |Ai|, log |Θi|}

)

Untruthful swap regret minimization 32/ 39



ut ∈ [0, 1]A reward vector in round t ∈ [T ]

πt ∈ ∆(A)mixed strategy in round t ∈ [T ] Subscript i is omitted from now on

ExternalRegretT △= max
a∗∈A

T∑
t=1

ut(a∗)−
T∑
t=1

E
at∼πt

[
ut(at)

]
Multiplicative Weights Update method: Initialize π1(a) = 1/|A| (∀a ∈ A),
For each t ∈ [T ]: Update πt+1(a) ∝ πt(a) exp(ηut(a)) (∀a ∈ A)
Theorem [Cesa-Bianchi–Lugosi’07]
If η =

√
log |A|
T , MWU achieves ExternalRegretT = O

(√
T log |A|

)

External regret minimization algo. 33/ 39



SwapRegretT △= max
ϕ : Ai→Ai

T∑
t=1

E
at∼πt

[
ut(ϕ(at))

]
−

T∑
t=1

E
at∼πt

[
ut(at)

]

SwapRegretT △= max
Q∈Q

T∑
t=1

⟨Qπt, ut⟩ −
T∑
t=1

⟨πt, ut⟩,
where Q =

{
Q ∈ [0, 1]A×A

∣∣∣ 1Q = 1
}

SwapRegretT △= max
Q∈Q

T∑
t=1

⟨Q, πt ⊗ ut⟩ −
T∑
t=1

⟨Qt, πt ⊗ ut⟩ if Qtπt = πt for all t ∈ [T ]

Swap regret minimization algo. [Blum–Mansour’07] 34/ 39



SwapRegretT △= max
Q∈Q

T∑
t=1

⟨Q, πt ⊗ ut⟩ −
T∑
t=1

⟨Qt, πt ⊗ ut⟩ if Qtπt = πt for all t ∈ [T ]

1: Initialize subroutines (Ea)a∈A for external regret minimization with actions A
2: for t = 1, 2, . . . , T do
3: Let qta ∈ ∆(A) be the output of subroutine Ea for each a ∈ A

4: Let Qt be an |A| × |A|matrix with each column qta
5: Find πt ∈ ∆(A) such that πt = Qtπt

6: Observe ut and feed πt(a)ut to subroutine Ea

Ea

Ea′

... πt

ut

qta

πt(a)ut

qt
a′

πt(a′)ut

Swap regret minimization algo. [Blum–Mansour’07] 35/ 39



RTUS,i = max
ψ : Θ→Θ

ϕ : Θ×A→A

T∑
t=1

E
θ∼ρ

[
E

a∼πt(ψ(θ))

[
ut(θ, ϕ(θ, a))

]]
−

T∑
t=1

E
θ∼ρ

[
E

a∼πt(θ)

[
ut(θ, a)

]]

SwapRegretT △= max
Q∈Q

T∑
t=1

⟨Qπt, ut⟩ −
T∑
t=1

⟨πt, ut⟩, where

Q =

Q ∈ [0, 1](Θ×A)×(Θ×A)

∣∣∣∣∣∣∣∣∣
there exists someW ∈ [0, 1]Θ×Θ such that∑

θ′∈ΘW (θ, θ′) = 1 (∀θ ∈ Θ) and∑
a∈AQ((θ, a), (θ′, a′)) =W (θ, θ′) (∀θ, θ′ ∈ Θ, a′ ∈ A)


πt and ut are flattened to be a |Θ| × |A| dimensional vector

Untruthful swap regret minimization algo. 36/ 39



...

...

...

Eθ

Eθ′

Eθθa

Eθθ′a′

Eθ′θa

Eθ′θ′a′

πtūt

wtθ∑
aa′

ytθ·a′(a)πt(·; a′)ūt(θ; a)

wtθ′∑
aa′

ytθ′·a′(a)πt(·; a′)ūt(θ′; a)

ytθθa

πt(θ; a)ūt(θ; ·)
ytθθ′a′

πt(θ′; a′)ūt(θ; ·)

ytθ′θa

πt(θ; a)ūt(θ′; ·)
ytθ′θ′a′

πt(θ′; a′)ūt(θ′; ·)

ūt(θ, a) △= ρ(θ)ut(θ, a) (∀θ, a)

Untruthful swap regret minimization algo. 37/ 39



The set of typesΘi and the set of actionsAi are specified in advance. The reward vector ut
i
∈ [0, 1]Θi×Ai is given at the end of each round t ∈ [T ].

Initialize subroutines as follows:
- let Eθi

be a multiplicative weights algorithm with decision spaceΘi for each θi ∈ Θi

- let E
θi,θ

′
i
,a′

i

be AdaHedge with decision spaceAi for each θi, θ
′
i
∈ Θi and a′

i
∈ Ai

for each round t = 1, . . . , T do
Letwt

θi
∈ ∆(Θi) be the output of Eθi

in round t for each θi ∈ Θi

Let yt

θi,θ
′
i
,a′

i

∈ ∆(Ai) be the output of Eθi,θ
′
i
,a′

i

in round t for each θi, θ
′
i
∈ Θi and a′

i
∈ Ai

DefineQt ∈ [0, 1](Θi×Ai)×(Θi×Ai) byQt((θi, ai), (θ′i, a
′
i
)) = wt

θi
(θ′

i
)yt

θi,θ
′
i
,a′

i

(ai) for each θi, θ
′
i
∈ Θi and ai, a

′
i
∈ Ai

Compute an eigenvector xt ∈ RΘi×Ai ofQt such thatQtxt = xt and (xt)⊤1 = |Θi|

Decide the output πt
i
∈ ∆(Ai)Θi by πt

i
(θi; ai) = xt(θi, ai) for each θi ∈ Θi and ai ∈ Ai

Observe reward vector ut
i
∈ [0, 1]Θi×Ai and feed reward vectors to subroutines as follows:

- feed
∑

ai,a
′
i
∈Ai

yt

θi,θ
′
i
,a′

i

(ai)π
t
i
(θ′

i
; a′

i
)ρi(θi)u

t
i
(θi, ai) as the reward for decision θ′

i
∈ Θi

to subroutine Eθi
for each θi ∈ Θi

- feed πt
i
(θ′

i
; a′

i
)ρi(θi)u

t
i
(θi, ai) as the reward for decision ai ∈ Ai to subroutine E

θi,θ
′
i
,a′

ifor each θi, θ
′
i
∈ Θi and a′

i
∈ Ai

Full description of the algorithm 38/ 39



ANFCE ∩ Com.Eq. in Bayesian games satisfies the following goals
Goal 1Goal 1 Efficient computation

No-regret dynamics converging to ANFCE ∩ Com.Eq.
Algorithm for simulating the dynamics with the optimal convergence rate

Goal 2Goal 2 PoA bounds
Extension of the smoothness framework from BNE to ANFCE ∩ Com.Eq.

Summary 39/ 39
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